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Eczema vaccinatum is a potentially fatal, disseminated viral skin infection that develops in individuals with
atopic dermatitis after exposure to the vaccinia virus (VV). Despite advances in modern medicine, there are few
options for those suffering from disseminated VV infections. Ceragenins (CSAs) are synthetic antimicrobial
compounds designed to mimic the structure and function of endogenous antimicrobial peptides (AMPs). We
show that CSA-13 exhibits potent antiviral activity against VV by (1) direct antiviral effects against VV; and
(2) stimulating the expression of endogenous AMPs with known antiviral activity against VV. In addition, we
show that a topical application of CSA-13 penetrates the skin and reduces subsequent satellite lesion formation.
This suggests that treatment with CSA-13 may be an intervention for individuals with a disseminated VV skin
infection.
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INTRODUCTION
Orthopoxviruses are a family of enveloped DNA viruses that
replicate their linear double-stranded DNA genome in the
cytoplasm of infected cells (Marennikova et al., 2005). Two
main members of this family are vaccinia virus (VV) and
variola major—the causative agent of smallpox. Owing to its
ability to protect against smallpox infection, VV was routinely
administered to individuals until the World Health Organiza-
tion declared that smallpox had been eradicated in the late
1970s (World Health Organization, 1980). Despite its
eradication in the 1970s, the potential use of smallpox as a
biological weapon poses an imminent threat. It is estimated
that 119 million residents of the United States have been born
after the smallpox vaccination was discontinued. Such
individuals are susceptible to smallpox infection, an epi-
demic of which could result in catastrophic numbers of death
and disease (Bicknell, 2002). Although VV is highly effective
at conferring protection, it also has the distinction of having a
high rate of adverse events that lead to the discontinuation of
its routine use in the general population. Adverse reactions

caused by VV can range from mild discomfort or painless to
life threatening.

Progressive vaccinia and eczema vaccinatum are poten-
tially fatal adverse reactions that primarily develop in
individuals with immunodeficiency disorders and eczema,
respectively (Cono et al., 2003). Although the use of Vaccinia
Immune Globulin Intravenous (Human) has reduced the
mortality of progressive vaccinia and eczema vaccinatum
(Cono et al., 2003), vaccinia immune globulin treatment is
not effective for everyone. The seriousness of this was
recently seen in a 28-month-old child who developed
eczema vaccinatum after exposure to VV and who was
unresponsive to treatment with vaccinia immune globulin
alone. Additional treatment with Cidofovir, which had earlier
been shown to be effective in animal models (Neyts et al.,
2004; Smee et al., 2004), also failed to significantly reduce
the viral load in the child (Vora et al., 2008). Thus, new
antiviral agents are needed for the treatment of disseminated
VV infection.

Recent studies indicate that the increased propensity of
atopic dermatitis patients toward eczema vaccinatum may be
related to a deficiency of naturally occurring antimicrobial
peptides (AMPs), such as cathelicidins or human beta
defensins (HBD) (Howell et al., 2006, 2007). Cathelicidins
and HBD-3 have been shown to exhibit potent antiviral
activity against VV (Howell et al., 2004, 2007); however,
their use as anti-VV agents is limited because of their rapid
degradation by endogenous tissue proteases. Ceragenins
(CSAs) are a new class of synthetic amphiphilic compounds
designed with cationic and hydrophobic faces to mimic the
structure of endogenous AMPs (Savage et al., 2002; Ding
et al., 2004a). Their structures have been shown to disrupt
bacterial membranes without damaging mammalian cell
membranes (Ding et al., 2004a); however, their activity
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against viruses is not known. On the basis of structural
similarities with AMPs, we predict that CSAs may also be
effective against orthopoxviruses. Owing to their synthetic
nature, CSAs are not subject to human protease degradation
and therefore have a longer tissue half-life. This makes them
more attractive as antiviral agents than their endogenous
AMP counterparts. This study was carried out to investigate
the potential use of CSAs as antiviral agents against VV using
in vitro and in vivo models.

RESULTS
Representative structures of the CSAs used in this study are
shown in Figure 1. CSAs were originally optimized for
antibacterial activity with variations made in the quantity and
character of cationic groups, and in the length and nature of
lipophilic chains (Savage et al., 2002). Therefore, we
evaluated the antiviral activity of CSA-13 and -31 using a
standard viral plaque assay. On the basis of our earlier
observations, LL-37 was included as a positive control
(Howell et al., 2006). CSA-13 exhibited potent antiviral
activity against VV by inactivating 60.62±4.94% of VV at
5 mM, 91.19±1.37% at 10 mM, and 96.37±0.52% at 25 mM

(Figure 2a). Using nonlinear regression, we calculated IC90
(9.15±1.09mM) and IC95 (12.02±1.13mM) for CSA-13. In
contrast, CSA-31 did not exhibit any activity against VV.
Using electron microscopy, we further evaluated the me-
chanism by which CSA-13 kills VV. Similar to LL-37 (Howell
et al., 2004), we found that CSA-13 significantly disrupts the
envelope and internal structure of VV (Figure 2b). In contrast,
CSA-31 had no such effects.

Viral replication and pathogenesis require host involve-
ment; therefore, additional experiments were carried out to
determine whether earlier infected human keratinocytes (KC)
could be rescued by CSA-13 treatment. KCs were infected
with VV for 6 hours and then treated with CSAs for an
additional 18 hours. In this experiment, KCs exposed to VV
had significantly higher levels of VV gene expression than
those cells exposed first to VV and then treated with CSA-13.
Treating VV-infected KCs with CSA-13 dose responsively
reduced the levels of VV gene expression to a significantly

(Po0.05) lower expression after the addition of concentra-
tions as low as 10 mM (0.76±0.05 ng VV per ng GAPDH
(glyceraldehyde-3-phosphate dehydrogenase)) as compared
with VV alone (1.53±0.10) (Figure 2c). In addition, CSA-13
protected the viability of KCs (Figure 2d). CSA-31, a
structurally similar CSA with no antiviral activity, failed to
reduce VV gene expression (Figure 2c) and did not protect
KCs from further VV infection (Figure 2d).

The potential use of CSAs in antiviral applications may
require selective targeting of viral envelopes over eukaryotic
membranes. Earlier comparisons of the affinity for prokar-
yotic versus eukaryotic membranes used CSA-59, a fluo-
rophore-labeled CSA. The fluorophore in CSA-59 is related to
prodan (Ding et al., 2004b), which is a small fluorophore that
responds to the hydrophobicity of its environment through
large changes in fluorescence emission wavelength and
intensity (Weber and Farris, 1979). In water, fluorescence
emissions of prodan and CSA-59 are centered at 550 nm, and
in aprotic solvents, the emission intensity increases and is
centered at 450 nm. Owing to the size of CSAs, addition of a
fluorophore has the potential to modify the antibacterial/
antiviral activities of the compounds. In our study, we found
that CSA-59 exhibited significant antiviral activity at con-
centrations of 10 mM (33.70±2.88% inactivation; Po0.01)
and 25 mM (73.91±3.26%; Po0.01) (Figure 3a). Although
this activity is less than that observed for CSA-13, the
structure and hydrophobicity of an appended fluorophore
can be used to approximate the lipid chains found on CSA-
13. The prodan fluorophore in CSA-59 contains 16 carbon
atoms in substituted naphthalene, dimethylamine, and in the
linker to the CSA. The carbonyl oxygen and amine offset the
hydrophobicity of naphthalene and linker to a degree, and
the fluorophore in CSA-59 may be considered to contribute
hydrophobicity intermediate to that found in CSA-13.

The incorporation of CSA-59 into bacterial membranes
correlates with an increased fluorescent intensity at 450 nm
(Ding et al., 2004b); therefore, we evaluated the association
of CSA-59 with VV and KCs on the basis of their surface
area. The surface area of VV was based on approximate radii
of 300 nm (Heuser, 2005), whereas that of KCs was
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Figure 1. Chemical structures of ceragenins used in this study.
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approximated at 11 mm (Barrandon and Green, 1985). The
relationships between surface area and fluorescence of CSA-
59 at 450 nm are given in Figure 3b. In the presence of VV,
fluorescence intensity of CSA-59 increases and the emission
wavelength decreases; both results are consistent with the
fluorophore on CSA-59 moving into a more hydrophobic
environment. Earlier studies with CSA-59 correlated these
fluorescence changes with the association of the compound
with a lipid bilayer, and titrations of CSA-59 with prokaryotes
or eukaryotic cells showed the lipid area necessary to
sequester the antimicrobial compound (Ding et al., 2004b).
Titrations of CSA-59 with VV were carried out to determine
whether the CSA would selectively incorporate into viral
envelopes over eukaryotic membranes. In these titrations,
CSA-59 incorporated into viral lipid bilayers in the presence
of a much less lipid bilayer surface area than that required
with KCs. This directly observed bilayer selectivity correlates
well with the ability of CSAs to inactivate VV while remaining
non-cytotoxic to KCs. The origins for this bilayer selectivity
are less clear. They may be because of differences in bilayer
composition, bilayer curvature (the viruses will experience
much more membrane curvature than the larger KC), or a
lack of membrane repair mechanisms.

We further tested the antiviral activity of CSA-13 using an
in vivo murine model. For these experiments, CSA-13 was
formulated as a cream that could be topically applied to test
whether the topical application of CSA after VV infection
would reduce viral pathogenesis. Severe combined immuno-
deficient (SCID) mice were infected with VV and then treated
with CSA cream 2 hours after infection, and then daily
thereafter. Satellite lesions, indicative of systemic viremia,
began appearing by day 7 after infection and were monitored
until day 10 (Figure 4a and b). SCID mice treated with CSA-
13 (n¼ 35) developed significantly less satellite lesions on
days 8 (mean: 0.7±0.2 satellite lesions; Po0.05) and 10
(mean: 4.5±1.2 satellite lesions; Po0.05) as compared with
SCID mice treated with control ointment (n¼ 41; day 8:
2.5±0.8 satellite lesions; day 10: 9.3±1.6 satellite lesions).
In addition to monitoring satellite lesion formation, the VV
replication in primary lesions was determined by staining
skin biopsies for A27L and measuring the mean fluorescent
intensity (Figure 4c). A27L is a viral protein essential for virus-
to-cell fusion (Rodriguez et al., 1996). SCID mice inoculated
with VV and treated with CSA-13 had significantly lower
levels of VV (MFI (mean fluorescence intensity) of
163.9±7.3; Po0.01) than did mice treated with control
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Figure 2. Ceragenins (CSAs) exhibit antiviral activity against vaccinia virus (VV). (a) Direct antiviral activity of LL-37, CSA-13, and -31 against VV (Wyeth),

using a standard plaque assay. Data are represented as the percent VV inactivation. ‘**’ indicates a significant difference of Po0.01 as compared with 0 mM.

(b) Transmission electron micrographs (� 27,500 magnification) of vaccinia virions treated with 50 mM of CSA-13 or -31. Arrows indicate areas of disruption

in the inner membrane and core wall. Bar indicates 0.1 mm. (c) CSA-13 rescues previously infected keratinocytes (KCs). Human KCs were infected with 0.05 PFU

per cell of VV (Wyeth) for 6 hours and then treated with CSA-13 or -31 for an additional 18 hours. VV gene expression was evaluated by real-time reverse

transcriptase PCR. ‘* and **’ indicate significant differences of Po0.05 and Po0.01, respectively, as compared with 0 mM. (d) Phase contrast image comparing

cell viability of KCs exposed to VV alone, VV plus 100 mM CSA-31, or VV plus 100 mM CSA-13. Images were collected at �10 magnification.
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(MFI of 204.9±11.9) (Figure 4d). Weight loss and mortality
rates were similar in mice treated with control or CSA-13.

Severe combined immunodeficient mice are characterized
by a lack of T and B cells, and therefore primarily rely on their
innate immune response to prevent morbidity and mortality.
The effect of CSAs on the innate immune response is
currently unknown. Therefore, we further investigated the
effect of CSA-13 on LL-37 and HBD-3, as they are known to

have an anti-VV activity (Howell et al., 2004, 2007). Primary
human KCs (NHK) were stimulated with 0–50 mM of CSA-13
for 24 hours. In Figure 5, we show that stimulating NHK with
CSA-13 induces LL-37 and HBD-3 in a dose-dependent
manner. LL-37 gene expression was significantly higher in
cells stimulated with 25 mM (1.25±0.36 ng LL-37 per ng
GAPDH; Po0.05) and 50 mM (6.19±1.43; Po0.01) of
CSA-13 than when stimulated with media alone

100

750

50

20

0

%
 V

V
 in

ac
tiv

at
io

n

5 10 25 50 100

CSA-59 concentration (µM)

F
lu

or
es

ce
nc

e 
in

te
ns

ity
(C

P
S

) 
at

 4
50

 n
m

160,000

140,000

120,000

100,000

80,000

60,000

40,000
0.0001 0.001

Surface area (mm2 ml–1)

0.01 0.1 1 1 100

Comparison of responses of CSA-59 to vaccinia and 
keratinocytes based on virus or cell surface area

Vaccinia
Keratinocytes

**

**

** **

Figure 3. Ceragenins (CSAs) preferentially target viral envelopes. (a) Direct antiviral activity of CSA-59 against vaccinia virus (VV) (Wyeth) using a

standard plaque assay. Data are represented as the percent VV inactivation. ‘**’ indicates a significant difference of Po0.01 as compared with 0 mM.

(b) CSAs selectively target viral envelopes than the HaCaT human keratinocyte (KC) cell line. The influence of VV and KCs on the fluorescence of CSA-59.

Fluorescence changes are plotted versus. the surface area of the organisms and indicate that CSA-59 preferentially incorporates into viral lipid bilayers.

VV/Cntrl
VV/CSA-13

7 8 9 10
Days post infection

VV + control VV + CSA-13

Anti-A27L

Isotype
control

CSA-13
treated

Control
treated

Mouse 10 Mouse 22

Mouse 44 Mouse 39

**
350

300

250

200

150

100

50

0
VV

+control
VV

+CSA13

V
V

 s
ta

in
in

g 
in

te
ns

ity
*

*12.5

10.0

7.5

5.0

2.5

0.0

A
ve

ra
ge

 s
at

el
lit

e
le

si
on

s 
pe

r 
m

ou
se

Figure 4. Ceragenin (CSA)-13 reduces vaccinia virus (VV) pathogenesis. (a) Satellite lesions on VV (WR1354)-infected severe combined immunodeficient

mice were counted on days 7–10 after inoculation. ‘*’ indicates a significant difference of Po0.05 between mice treated with control cream and mice

treated with CSA-13. (b) Satellite lesion formation 10 days after VV infection. Arrows indicate the location of satellite lesions on the backs of mice treated

with control or CSA-13. (c) A 6 mm biopsy was collected from the primary site of VV infection. VV replication was evaluated by staining for A27L, a viral

protein essential for virus-to-cell fusion. Arrows indicate areas of intense VV staining in biopsies from mice treated with control cream and the lack of

VV staining in biopsies from mice treated with CSA-13. (d) Mean fluorescence intensity was measured using confocal microscopy. ‘**’ indicates a significant

difference of Po0.01 between mice treated with control cream and mice treated with CSA-13. Bar indicates 50 mm.
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(0.08±0.02) (Figure 5a). Similarly, the HBD-3 expression
was significantly induced after stimulation with 25
(4816±677 ng HBD-3 per ng GAPDH; Po0.05) and 50 mM

(10447±2027; Po0.01) of CSA-13 than when stimulated
with media alone (114±43) (Figure 5b). On further testing,
we found that stimulation with CSAs at concentrations
425 mM significantly modulates GAPDH expression. This
suggests that CSAs exhibit a mild cytotoxic effect at
concentrations 425 mM (data not shown).

On the basis of our observation that CSA-13 significantly
induces AMPs with known antiviral activity, we further
investigated whether a CSA-13-mediated induction of AMP is
associated with reduced VV replication. NHK was stimulated
with 50 mM of CSA-13 for 6 hours and then infected with VV
for 24 hours. VV replicates in the cytoplasm of host cells;
therefore, the cellular effluent containing CSA-13 was
removed before infection to prevent the extracellular
inactivation of VV. After 24 hours, VV replication was
significantly decreased in NHK pretreated with CSA-13 as
compared with that in NHK treated with media alone
(Figure 6). Specifically, pretreatment with CSA-13 signifi-
cantly reduced the VV expression in NHK infected with
0.01 PFU (plaque forming unit) per cell (Po0.05), 0.05 PFU
per cell (Po0.05), and 0.1 PFU per cell (Po0.01), as
compared with that in NHK treated with media alone.

DISCUSSION
Currently, there are limited treatment options for individuals
suffering from orthopoxvirus infections. For decades, VV was
used to protect individuals from infection with variola major
(smallpox); however, potentially fatal VV infections can
develop in individuals with immunodeficiency or skin
disorders (Cono et al., 2003). The recent emergence of
monkeypox (Reynolds et al., 2007) and cowpox (Kurth et al.,
2008) emphasizes the potential risk for human orthopox
infection. It also highlights the need to both understand
orthopoxviruses and develop antiviral agents to treat ortho-
pox infections.

In our study, we evaluated the antiviral activity of a class
of compounds. CSA-13 has earlier been shown to exhibit
potent antibacterial activity, whereas CSA-31 did not (Reh-
man et al., 1999; Savage et al., 2002). Therefore, we used
CSA-13 as the candidate compound for our study. Our first
experiment evaluated the direct effect of CSA-13 on VV
replication. Using the standard viral plaque assay as a
functional readout, we show that CSA-13 exhibits potent
antiviral activity against VV. Viruses use the host for survival;
therefore, additional experiments were carried out using VV-
infected KCs. In these experiments, we show that the addition
of CSA-13 reduced VV replication and rescued the infected
cells. It was further determined, using the flourophore-
labeled CSA-59, that CSAs preferentially target viral envel-
opes to exhibit their activity.

As CSAs exhibit potent activity against VV, protect KCs
in vitro against VV-mediated cell death, and preferentially
target the negatively charged viral particles, the antiviral
activity of CSA-13 was further tested using an in vivo murine
model. We first established a murine model of disseminated
vaccinia viral infection by infecting SCID mice with 5�106

PFU of VV. The infected mice developed satellite lesions
(42 mm from primary inoculation site) as early as day 7 after
infection. Earlier studies with the antiviral agent, cidofovir,
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showed that topical application provided better protection
against VV infection than did parenteral administration (Smee
et al., 2004); therefore, CSA-13 was formulated as a cream
and topically applied to the entire back of the mice after VV
infection. To our knowledge, this is the first study to show that
treatment with CSA-13 reduces the development of satellite
lesions and inhibits VV replication in the epidermis of
infected mice.

Severe combined immunodeficient mice primarily rely on
their innate immune response for survival, as they do not
have sufficient T and B cells. Earlier, we have shown that the
innate immune response, namely, the AMPs, plays an
important role in the regulation of VV pathogenesis. LL-37
and HBD-3 are AMPs produced by KCs in response to
external stimulus and exhibit potent activity against VV
(Howell et al., 2004, 2007); therefore, we investigated
whether stimulation of cells with CSA-13 modulated the
expression of these AMPs. We show that stimulation with
CSA-13 induces the expression of both LL-37 and HBD-3,
suggesting that the antiviral effects of CSA-13 may be both
direct and indirect. As the CSAs mimic the morphology of
LL-37, it is likely that CSAs mimic the interaction of LL-37
with its receptors. These include P2X7 (Gabel, 2007), formal
peptide receptor-like 1 (Li et al., 2008), and epidermal growth
factor (Burgel and Nadel, 2008; Burgess, 2008). In addition,
we showed that stimulating KCs with CSA-13 before infection
reduced the ability of VV to replicate.

In our study, we show that CSA-13 exhibits a potent
antiviral activity by preferentially targeting and inactivating
VV directly and by inducing AMPs with a known activity
against VV. In addition, we show that a topical administration
of CSA-13 significantly reduces the development of satellite
lesions. Taken together, our study suggests that CSAs may be
effective as an antiviral agent against disseminated VV
infections. The development of these synthetic agents for
treatment of disseminated viral skin infections represents an
exciting advance as we appreciate the important role that
naturally occurring AMPs play in the human innate immune
response.

MATERIALS AND METHODS
Virus preparation

These studies used the Wyeth (Center for Disease Control and

Prevention, Atlanta, GA) and Western Reserve (VR1354; ATCC,

Manassas, VA) strains of VV. The virus was propagated in HeLa S3

(ATCC#CCK-2.2) human adenocarcinoma cells as described earlier

(Howell et al., 2004).

CSAs preparation

Ceragenins were prepared as described in earlier studies (Li et al.,

1999; Ding et al., 2002, 2004a). Representative CSA structures of

those used in this study are shown in Figure 1.

Viral plaque assay

BS-C-1 (ATCC #CCL-26) African green monkey kidney cells were

used for the viral plaque assay as described earlier (Howell et al.,

2004).

Ceragenin stocks were hydrated at 5 mg ml�1 in DMSO, mixed

well, aliquotted, and stored at �801C. CSAs were diluted to proper

concentrations in 0.01� tryptic soy broth containing 10 mM sodium

phosphate buffer, pH¼ 7.4. Virus diluted in the same buffer was

added to the compounds, and they were incubated for 24 hours at

371C. A total of 20 ml of the peptide–virus mixture was added to the

cells in 0.5 ml minimum essential medium containing 2.5% fetal calf

serum and allowed to infect for 48 hours for plaque development.

The medium was removed and the wells were overlaid

with 0.5 ml 10% buffered formalin, and allowed to fix for 10 minutes

at room temperature. The formalin was removed and 0.5 ml 0.1%

crystal violet in phosphate-buffered saline was added to the wells for

5 minutes at room temperature. The wells were then aspirated and

air-dried for observing plaques. We found the most accurate results,

with the virus alone forming 50–80 plaques per well. Results are

expressed as percent killing to allow comparisons between the

compounds.

Electron microscopy

Concentrated VV stock (108 PFU) was treated with CSA-13 and -31

at a final concentration of 50 mM, and analyzed by transmission

electron microscopy with a Phillips CM-10 as described earlier

(Howell et al., 2004).

KC cell culture

The HaCaT human KC cell line was grown in DMEM (Cellgro,

Herndon, VA) as described earlier (Howell et al., 2006). To

investigate the antiviral activity of CSAs, the cells were seeded in

24-well plates at a concentration of 2� 105 cells per well. The cells

were infected with VV (0.05 PFU per cell) for 6 hours. After

incubation, the virus was removed and the cells were washed with

media to remove the remaining virus. CSAs (0–100mM) were added

to the infected KCs and allowed to incubate for an additional

18 hours. Total RNA was isolated from KCs using RNeasy Kits

according to the manufacturer’s guidelines (Qiagen, Valencia,

CA) for analysis of VV gene expression by real-time reverse

transcriptase PCR.

Primary human KC cell cultures were obtained from Cascade

Biologics (Portland, OR) and maintained in serum-free EpiLife

Medium (Cascade Biologics) supplemented with 1% human KCs

growth supplement V2 (Cascade Biologics), 1% of penicillin and

streptomycin, and 0.06 mM CaCl2 as described earlier (Kim et al.,

2008). Before their use in experiments, NHK cells were differentiated

in 1.3 mM CaCl2 for 5 days. To understand the effects of CSA-13 on

the innate immune response, differentiated NHK cells were

stimulated with 1–50 mM CSA-13 for 24 hours. Total RNA was

isolated from KCs using RNeasy Kits, according to the manufac-

turer’s guidelines (Qiagen), for analysis by real-time reverse

transcriptase PCR. Additional experiments were conducted to

determine whether pretreating KCs for 6 hours with 50 mM of CSA-

13 protects against VV infection.

Real time reverse transcriptase PCR

RNeasy Mini Kits (Qiagen) were used according to the manufac-

turer’s protocol to further purify RNA from skin biopsies and to

isolate RNA from cell cultures. RNA will be reverse transcribed

into cDNA and analyzed by real-time reverse transcriptase PCR

using an ABI Prism 7300 sequence detector (Applied Biosystems,

6 Journal of Investigative Dermatology

MD Howell et al.
CSAs as Antiviral Agents against Vaccinia Virus



Foster City, CA), as described earlier (Howell et al., 2006). Primers

and probes for human GAPDH were purchased from Applied

Biosystems. VV, LL-37, and HBD-3 primers and probes were

prepared as described earlier (Ong et al., 2002; Nomura et al.,

2003; Howell et al., 2004). The primer and probe sequences for VV

recognize a subunit of a DNA-directed RNA polymerase expressed

within 2 hours of viral entry (Amegadzie et al., 1991). To allow for

comparisons between samples and group, quantities of all targets in

test samples were normalized to the corresponding GAPDH or total

cDNA levels as described earlier (Howell et al., 2006).

Titration experiments
A fluorophore-labeled CSA (CSA-59) (Ding et al., 2004b) was

dissolved in phosphate-buffered saline at a concentration of

1.2mg ml�1. Purified VV (108 PFU ml�1) was suspended in phos-

phate-buffered saline at concentrations of 104, 105, and 106 PFU ml�1

for these experiments. An aliquot of the CSA-59 solution was placed

in a quartz cuvette in a FluoroMax-3 fluorometer (Horiba Jobin-Yvon,

Edison, NJ). The temperature was held constant at 251C. The VV was

titrated into the CSA solution, and fluorescence emission was

measured (lex¼ 340 nm, lex¼ 450 nm) in counts per second.

Fluorescence intensities were corrected for changes in concentration

during titration. Fluorescent experiments with KCs were carried out in

a similar manner. Titration experiments were carried out twice or

thrice with similar results.

Mice

CBySmn.CB17-PrkdcSCID/J mice were purchased from the Jackson

Laboratory (Bar Harbor, ME). Crl:SKH1-hr (hairless) mice were

purchased from Charles River Laboratories Inc. (Wilmington, MA).

All experiments using these animals were approved by the

Institutional Animal Care and Use Committee at National

Jewish Health. This institution has an animal welfare assurance

number (A3026-1) on file with the Office of Protection and

Research Risks.

Murine infection

The dorsal thoracic and lumbar regions of mice were clipped and

treated with the depilatory agent, Nair, to remove all hair. At 72

hours after hair removal, the mice were anesthetized and inoculated

with 5� 106 PFU of Western Reserve VV by scarification. At 2 hours

after inoculation, CSA-13 or control cream (petrolatum jelly) was

applied to the dorsal thoracic and lumbar regions. Topical

application was repeated daily until day 10 after inoculation. The

mice were monitored for the formation of satellite lesions, weight

loss, and mortality.

CSA penetration

To evaluate the ability of CSAs to penetrate the skin, a FITC-

conjugated CSA-13 cream was applied to the dorsal region of hairless

mice (Charles River Laboratories Inc.). Skin biopsies were collected 2,

4, 8, and 24 hours after application, immediately submerged in

Tissue-Tek OCT compound (Sakura Finetek USA Inc., Torrance, CA),

and then cut into 5mm sections. The slides were counterstained with

wheat germ agglutinin conjugate, Alexa Fluor-633 (Molecular Probes,

Eugene, OR), visualized with confocal microscopy (Leica, Wetzlar,

Germany), and images were collected at � 40 with Slidebook 4.1

(Intelligent Imaging Innovations, Denver, CO).

VV immunofluorescent staining
Paraffin-embedded tissues were cut at 5mm on frosted microscope

slides. Using toluene and a series of ethanol washes, the slides were

deparaffinized and then rehydrated. The slides were then immersed in

an antigen-retrieval solution (0.01 mol l�1 citric acid, 0.05 mol l�1

NaOH, pH 6.0) and microwaved for 7 minutes to retrieve the masked

antigens. Skin sections were then blocked with 5% BSA in Super Block

(ScyTek Laboratories, Logan, UT) containing 10% non-immune

donkey serum (Jackson Laboratories, West Grove, PA) for 60 minutes

at 371C. The slides were then stained with a mouse monoclonal anti-

VV antibody (Santa Cruz Biotechnology, Santa Cruz, CA) directed

against the 14 kDa protein of VV or control mouse IgG3 (Santa Cruz

Biotechnology) at 41C overnight. The slides were washed with

phosphate-buffered saline/Tween 0.05%, followed by incubation with

a Cy3-conjugated donkey anti-mouse IgG (Jackson Laboratories).

Immunohistochemical staining was visualized with confocal micro-

scopy (Leica, Wetzlar, Germany). Images were collected at � 40, and

levels of mean fluorescence intensity were measured with Slidebook

4.1 (Intelligent Imaging Innovations). The MFI was determined for each

exposure group and was reported as mean MFI±SE.

Statistical analyses

All statistical analyses were conducted using Graph Pad Prism,

version 4.01 (San Diego, CA). Data were analyzed using Student’s

t-test or one-way analysis of variance (ANOVA), followed by a

Tukey–Kramer post hoc test (Tukey, 1977). Differences were

considered significant at Po0.05. IC90 and IC95 values were

determined using nonlinear regression.
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