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Abstract

Growing antibiotic resistance among pathogenic microorganisms is one of the most challenging problems. Often, a single 
mutation in a bacterial cell leads to the formation of a new drug resistance mechanism. The ceragenins are a novel class of an-
tibiotic, offering great promise in future treatment of infections. These cationic antimicrobial lipids are net positively charged 
cholic acid derivates that are electrostatically attracted to the negatively charged membranes of bacteria, certain viruses, fun-
gi, and protozoa. After membrane insertion, they interfere with membrane organisation, resulting in membrane dysfunction 
and cell death. This review focuses on the broad spectrum of antibacterial activity of ceragenins, and their potential to become 
a new group of antibiotics for prevention and treatment of infections, especially those caused by multidrug-resistant bacteria. 

Streszczenie

Stale narastająca oporność bakterii na antybiotyki jest jednym z najtrudniejszych problemów. Często pojedyncza mutacja 
w komórce bakteryjnej prowadzi do powstania i rozwoju nowego mechanizmu, nadającego bakteriom oporność na anty-
biotyki. Cerageniny (pochodne kwasu cholowego) są analogami naturalnych kationowych peptydów przeciwbakteryjnych 
oferujących nowe możliwości w leczeniu infekcji bakteryjnych. Mają one dodatni ładunek powierzchniowy, dzięki czemu 
oddziałują elektrostatycznie z negatywnie naładowaną powierzchnią bakterii, wirusów, grzybów i pierwotniaków. Po inser-
cji w strukturę lipidową błony mikroorganizmów zaburzają jej funkcję, co w efekcie prowadzi do śmierci komórki. W niniej- 
szej pracy przedstawiono szerokie spektrum aktywności przeciwdrobnoustrojowej ceragenin i ich potencjał w zwalczaniu 
infekcji, w szczególności powodowanych przez wielooporne szczepy bakteryjne.

Multidrug-resistance

The widespread inappropriate use of antibiotics 
is considered the major factor driving the increasing 
number of multidrug-resistant bacterial strains. Anti-
biotic treatment is very often prescribed as a preven-
tative treatment and is given with disregard to the 
importance of the commensal microbiota that colo-
nise the skin, gut, and mucosal surfaces of the human 
body [1]. According to the U.S. Center for Disease Con-
trol and Prevention (CDC), every year drug-resistant 
bacteria infect more than two million people nation-

wide, and a  large percentage of those infections oc-
cur with involvement of multidrug-resistant bacteria. 
Additionally, some of those infections are acquired 
in health care facilities (health care-associated infec-
tions, HCAIs). Multidrug-resistant pathogens usually 
cause infections in more vulnerable individuals, espe-
cially immunocompromised and immunosuppressed 
patients, and those with burn injuries, cancer, or ge-
netic disorders such as cystic fibrosis (CF) or Down’s 
syndrome [2, 3]. Drug resistance is considered the 
most important cause of expansion of tuberculosis 
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in the modern world. In the European Region of the 
World Health Organisation (WHO) a total of 15.7% of 
new and 45.3% of previously treated tuberculosis (TB) 
cases are estimated to be caused by multidrug-resis-
tant tuberculosis (MDR-TB). Drug-resistant TB (XDR-
TB) (resistance to fluoroquinolones and second-line 
injectables) has been reported extensively in 38 of the 
53 countries of the region (72%) [4, 5]. In addition, 
there are an increasing number of reported infections 
caused by multidrug-resistant Escherichia coli, Klebsiel-
la pneumoniae, Staphylococcus aureus, Vibrio cholera, and 
non-typhoid Salmonella in different African countries 
[6]. Some Asian countries have become epicentres of 
resistance, having seen rapid increases in the preva-
lence of antimicrobial resistance of major bacterial 
pathogens (MRSA, macrolide-resistant Streptococcus 
pneumoniae, and multidrug-resistant Enterobacteria- 
ceae) with very high rates of HCAIs [7, 8]. Latin Ameri-
ca has a high rate of community-associated infections 
caused by multidrug-resistant Enterobacteriaceae rela-
tive to other world regions. Urinary tract infections 
(UTIs) by E. coli, and intra-abdominal infections (IAIs) 
by E. coli and K. pneumoniae, are characterised by high 
rates of resistance to trimethoprim/sulphamethoxaz-
ole, quinolones, and second-generation cephalospo-
rins [9]. In response to the global public health threat 
posed by resistant pathogens a  number of national 
and international actions and initiatives have been 
developed [10]. Although the most effective strategy 
to reduce the incidence of infections caused by mul-
tidrug-resistant bacteria has not yet been established, 
a multifaceted method is will probably be most effec-
tive, including actions aimed at optimising antibiot-
ic use, increasing surveillance and infection control, 
and improving healthcare worker training and public 
education with regard to unanticipated consequences 
of antibiotic use [10]. Research should be focused on 
bringing new effective antibiotics, antibiotic-antibi-
otic combinations, and the development of adjuvants 
that either directly target resistance mechanisms 
((such as inhibition of β-lactamase enzymes) or in-
directly target resistance by interfering with bacteri-
al signalling pathways (similarly to two-component 
systems (TCSs)) [11]. Design of new bactericidal mole-
cules should be based on two fundamental principles. 
First, the new agents should target simple but funda-
mental properties of the bacteria, which would render 
resistance much more difficult to develop. Second, the 
antimicrobial agents should have anti-biofilm proper-
ties [12].

Ceragenins 

Produced by shark Squalus acanthias and described 
in 1993, squalamine is considered to be the first nat-
ural representative of the ceragenin family (Figures 
1 A  and 1 B). It exhibits potent bactericidal activi-
ty against both Gram-negative and Gram-positive 

bacteria. Furthermore, it is fungicidal by inducing 
osmotic lysis of the protozoa cell. The discovery of 
squalamine in the shark implicates a steroid molecule 
as a  potential host-defence agent in vertebrates and 
provides insight into the chemical design of a  fami-
ly of broad-spectrum antibiotics [13]. In contrast to 
the sterol nature of fish squalamine, all mammals are 
equipped with cationic antibacterial peptides (CAPs) 
that represent the first line of defence against inva-
sive pathogens [14, 15]. Physicochemical properties 
of squalamine and CAPs are similar because both 
are amphiphilic with net positive charge. Both are 
attractive candidates for clinical development of new 
antibiotics for three reasons: 1) a non-specific ability 
to induce dysfunction of the membranes of the patho-
gen (membrane permeabilisation and depolarisation), 
2) speed of action, and 3) the difficulty of bacteria to 
develop a resistance mechanism [16–20]. 

The advantageous properties of squalamine and 
CAPs were used in the development of a new class of 
synthetic antibacterial molecules including ceragen-
ins. Ceragenins are cholic acid derivates [16] that are 
similar in antibacterial activity to condensed amino 
acid (derivatives of cholic acid marked with L-argi-
nine), which was first synthesised in 1979 [21]. Like 
antibacterial peptides [22, 23], ceragenins display 
positive charges arranged on one face and hydro-
phobic residues on the other [16]. Ceragenins are also 
known as cationic steroid antibiotics (CSAs) and can 
be separated into two categories: polymyxin mimics, 
and squalamine and its mimics. Polymyxin mimics 
are characterised structurally by the attachment of 
three amine groups, via tethers, to a  steroid nucle-
us. The second group consists of squalamine and its 
mimics, where the position of the polyamine and sul-
phate groups are reversed. Squalamine and its mim-
ics can accept facially amphiphilic conformations in 
the presence of membrane molecules by passing the 
polyamine chain common to these compounds over 
the face of the steroid [24, 25]. CSA-13 is a lead com-
pound from the ceragenin family, which is relative-
ly simple to prepare and purify at a low cost [17, 19]. 
The broad spectrum of CSA-13 antibacterial activity 
includes activity against multidrug-resistant P. aerugi-
nosa [26], vancomycin-resistant S. aureus [27] H. pylo-
ri [28], carbapenem-resistant Acinetobacter baumannii 
[29], and periodontopathic bacteria such as Streptococ-
cus mutans and Porphyromonas species [30] (Table 1). 
Significant activity of CSA-13 against cariogenic and 
periodontopathic bacteria correlate with its ability 
to bind bacteria lipopolysaccharide and lipoteichoic 
acid linked to erythrocytes [30]. CSA-13 is also active 
against vaccinia virus (VV) [31] and Trypanosoma cruzi 
[32]. Although some forms of ceragenins are effective 
against both Gram-negative and Gram-positive bacte-
ria, they are generally more potent against Gram-pos-
itive bacteria (Figures 1 C and 1 D). Surprisingly, it is 
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not the cell wall, but the high content of phosphati-
dylethanolamine in most Gram-negative bacteria 
that provide them with resistance [17]. Ceragenins 
with a hydrophobic chain are bactericidal at low con-
centrations and match the antibacterial activity of 
polymyxin B against Gram-positive bacteria [24]. Re-
cently, antimicrobial nanoparticles were synthesised 
using ceragenins and they were introduced as mul-
tifunctional theranostics [33]. Different applications 
of ceragenins include contact lenses, hydrogels with 
an antibacterial innate immune function [34], poly-
meric coating applied to implanted devices to prevent 
perioperative device-related infections [35], thermal-
ly, chemically, and physically stable medical grade 
polydimethylsiloxane (PDMS) material to prevent 
biofilm formation [36], silicon [37], and gene delivery 
systems [38] (Figure 2). Similarly to cathelicidin-relat-
ed antimicrobial peptides [15], ceragenins that mimic 
the hydrophobic and cationic morphology of catheli-
cidin have antiproliferative effects on the colon can-
cer-derived cell line HCT116. Addition of CSA-13 to 
a  cell culture of HCT116 cells arrested cell growth, 
increasing the incidence of apoptosis detected by the 
binding of annexin V, and mitochondrial membrane 
depolarisation. More precisely, cell-cycle analysis 
showed that the CSA-13-treated wild-type and p53 
null mutant HCT116 cell growth was arrested at the 
G1/S phase, indicating that CSA-13 affects the cell cy-
cle through a p53-independent pathway. This finding 
suggests that the membrane-permeabilising capabili-
ty is the common underlying mechanism for both the 
anticancer and antimicrobial effects of CSA-13 [39]. 
CSA-13 shows low toxicity in animal studies, support-
ing this compound’s possible application in human 
treatment [40]. However, ceragenins and CAPs may be 
restricted to topical applications due to low activity in 
blood plasma [20]. Ceragenin molecules are advanta-
geous over cationic amphipathic peptides due to their 
protease resistance. They also incorporate stably into 
membranes and have the unusual property of form-
ing complexes with phospholipids [17]. 

Ceragenins in treatment of cystic fibrosis 
lung infections 

Cystic fibrosis is an autosomal-recessive genet-
ic disease caused by mutations in the cystic fibrosis 
transmembrane conductance regulator (CFTR) gene 
of chromosome 7. Chronic lung infections caused in 
about 70% of CF adult patients by P. aeruginosa are the 
major cause of death in the course of CF lung disease. 
Treatment of lung infections to reduce inflammation 
and lung injury is of major importance in the manage-
ment of CF. The CF individuals are extremely suscep-
tible to bacterial infections of the respiratory tract due 
to very viscous, dehydrated sputum accumulating in 
the airways. Frequent and intensive antibiotic thera-
py is required to maintain lung function, to increase 

Table 1. Susceptibility of selected bacteria strains to CSA-
13 administration expressed as minimal inhibitory con-
centration (MIC)

Bacteria strain 
(*clinical isolate)

MIC 
[mg/l]

Ref.

Staphylococcus aureus MRSA 0.5 [20]

Staphylococcus aureus VISA 1 [20]

Staphylococcus aureus VRSA 1.1 [20]

Staphylococcus aureus ATCC 
25923 VRSA

0.4 [18]

Staphylococcus aureus ATCC 
25923 

0.3 [18]

Streptococcus salivarius ATCC 
13419

0.7 [44]

Streptococcus mutans ATCC 
35668

0.7 [44]

Staphylococcus epidermidis* 0.35 [44]

Streptococcus pneumoniae* 0.35 [44]

Streptococcus pyogenes* 0.7 [44]

Lactobacillus 
casei ssp. casei ATCC 393

22.4 [44]

Staphylococcus aureus Xen 29 1.4 [44]

Enterococcus faecalis  
ATCC 29212

2.8 [44]

Haemophilus influenzae* 0.35 [44]

Moraxella catarrhalis  
ATCC 23246

1.4 [44]

Helicobacter pylori* 0.7 [44]

Pseudomonas aeruginosa Xen 5
Pseudomonas aeruginosa 

5.6
2

[44]
[52]

Pseudomonas aeruginosa  
ATCC 27853 

2 [18]

Pseudomonas aeruginosa 316*  4 [26]

Pseudomonas aeruginosa 711* 8 [26]

Pseudomonas aeruginosa 727* 1 [26]

Pseudomonas aeruginosa R1130 4 [26]

Neisseria meningitidis (B) 0.7 [44]

Neisseria meningitidis (C) 0.7 [44]

Acinetobacter baumannii  
ATCC 19606

3 [18]

Acinetobacter baumannii 1.6 [29]

Pseudomonas cangingivalis 3.2 [30]

Pseudomonas circumdentaria 0.8 [30]
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Figure 1. Squalamine: aminosterol molecules with potent broad spectrum of bactericidal activity isolated from tissues  
of the dogfish shark Squalus acanthias by Dr. Michael Zasloff [13] (panel A). Lead molecules of ceragenin family (panel 
B). EM image of E. coli cells before (panel C) and after treatment with CSA-13 for 1 h at 37°C (panel D)
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quality of life, and to reduce exacerbations in infected 
patients [41]. Different studies suggest that ceragen-
ins have strong potential for the development of new 
treatments for CF lung infections. The synergy of an-
tibiotics with molecules contributing to innate immu-
nity is an additional approach to fight multi-resistant 
bacteria [42]. In addition to Pseudomonas aeruginosa, 
other common pathogens of CF lung infections in-
clude: Staphylococcus aureus, Haemophilus influenzae, 
Stenotrophomonas maltophilia, and Burkholderia species. 
All are susceptible to ceragenin treatment in vitro [19, 
43–45]. 

In CF airways, P. aeruginosa infection persists in 
biofilm form. Biofilm formation protects the aggre-
gated, biopolymer-embedded bacteria from antibiotic 
treatments and host immunity [46]. Regardless of the 
morphology of the biofilm, its formation starts with 
the adhesion of bacterial cells. This process depends to 
some extent on the interaction overcoming any repul-
sive forces between microorganisms and components 
of the extracellular environment. Natural negatively 
charged biopolymers like DNA and F-actin released 
from host cells were recently identified as important 
factors stimulating P. aeuginosa biofilm growth [47] 
and are also a potential target to prevent biofilm for-
mation [48, 49]. The antibacterial activity of ceragenins 
is not affected by DNA or F-actin, which are present 
in high concentration in cystic fibrosis airway spu-
tum [43]. Combining ceragenins with classical antibi-
otics to fight resistant P. aeruginosa infections is a po-
tential approach to this problem [50]. Bozkurt-Guzel  
et al. presented in vitro interactions of CSA-13 in com-
bination with colistin, tobramycin, and ciprofloxacin 
against P. aeruginosa strains using a microbroth check-
erboard. Their results showed synergistic interactions 
of CSA-13-colistin (54% of tested strains), whereas the 
least synergistic interactions were observed with the 
CSA-13-tobramycin (25% of tested strains). CSA-13-
colistin is shown to be the most effective combination, 
and the frequency of synergistic interactions in this 
combination showed significant statistical differenc-
es from CSA-13-tobramycin and colistin-ciproflox-
acin. This is the first study associating CSA-13 with 
colistin against P. aeruginosa strains isolated from CF 
patients. Nagat et al. showed that CSA-13 effectively 
kills ensconced cells within established biofilms, in 
addition to just on the surface [51]. A  low concentra-
tion of CSA-13 inhibits the formation of a biofilm by 
P. aeruginosa through electrostatic interaction [12]. 
Therefore, CSA-13 has bactericidal activity against  
P. aeruginosa even in mature biofilms, and appears to 
be a  good candidate for further investigations of the 
treatment involving biofilms of P. aeruginosa strains in 
CF patients [52].

Conclusions

Ceragenins are a promising class of molecules for 
the development of new treatments against infections 
caused by multidrug-resistant pathogens including 
resistant strains of P. aeruginosa within a biofilm.
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